
Kickstart Your Drupal Build
with Sous and Emulsify
MidCamp 2023
April 27, 2023

Made for you by Four Kitchens

Agenda
Why Use Sous & Emulsify? Practical
solutions to Common Problems

1

A (brief) introduction to Component
Driven Development

2

Example component development3

2

Made for you by Four Kitchens

Our team

Laura Johnson

Senior Engineer

Callin Mullaney

Senior Engineer

Amanda Luker

Sr. Front End
Engineer

3

Brian Goldstein

Technical Strategist

Made for you by Four Kitchens

We’ll use these terms
a lot today:

Glossary

● Emulsify: Design system and component library

● Storybook: A front-end workshop for building components

● Sous: A starter kit for Drupal that comes with an Emulsify-based theme

● Compound: A library of pre-built components

4

Practical Solutions
Part 1

Ninety Nine Problems…

Made for you by Four Kitchens

One Size Fits None
Common Problems

It often seems like the only
options are to use a completely
blank install profile or to select
an over-opinionated
distribution with a lot of bloat,
overhead, or old practices
baked in.

Good luck layering on a
workflow that accounts for
local, development, and
production environments and
release management

The hardest part of most builds
can just be getting everyone
involved to use the same name
when they are talking about or
working on the same thing.

Handing off tickets between
engineers, or trying to figure
out which milestone on a
feature comes first leads to a
lot of “Two Step Forward, One
Step Back” progress.

Bloated Distributions Workflow Disconnect What’s my name again? Herky-Jerky

7

Sous & Emulsify Solve
Many Problems

Some of our favorite things about them

Made for you by Four Kitchens

We thought of it, so
you won’t need to.

Practical Solutions

Sous makes minimal
assumptions about what you’ll
need in a build, but gives
enough of a starting point that
you’re not staring at a complete
blank.

With updated build commands
and hosting supports on the
way, Sous can help you get all
of your environments spun up
and synced faster.

Integrating Storybook into
Emulsify provides a one-stop
shop for clients, designers,
engineers, and site builders to
reference for naming
conventions, testing, and what
configurations might look like.

As a tool for component driven
development, Emulsify helps
teams work on the front and
back ends independently from
each other, improving accuracy
and efficiency.

Minimal Assumptions Workflow Support Storybook Separate Concerns

9

A (brief) introduction
to Component Driven
Development

Part 2

Made for you by Four Kitchens

Component Driven Development

Why do things this way?

11

● Clarity in User Stories, Acceptance
Criteria, and Estimation

● Separation of efforts

● Reduce repetition

● “Lego” complexity

● Isolates testing domains

● Enables lots of flexibility for content
editors

What is it?
Component Driven Development (CDD)

breaks sites and applications into discrete

“features” that can be integrated with the

CMS, and tested independently from one

another.

● Component: any part of a website that has a front-end
display, a configurable back end, and/or transmits data.

● Common Components are things like Menus, Forms,
Buttons, Sliders, or Tabs.

Streamline Project
Setup

One command to kickoff your project!

Made for you by Four Kitchens 13

> composer create-project fourkitchens/sous-drupal-project [PROJECT_NAME] --no-interaction

Composer: install all Drupal with all dependencies

Additional scripts:

● Create new custom theme based on Emulsify
● Install all theme dependencies
● Build Storybook
● Run the Drupal install script
● Block the superuser and create a new admin user
● Log in as the admin user

Made for you by Four Kitchens

> cd [PROJECT_NAME] && lando sous-demo-install

Lando command: run script that installs default content module & theme

Working through an
Example Component

Part 3

Made for you by Four Kitchens

What Are We
Building
today?

For today’s demo, we’ll be stepping through a
component that comes included, the Text with
Media component.

We’ll also go over some good guidance when
you go to build your own components!

Walk Through

16

Made for you by Four Kitchens 17

Text with Image component

Made for you by Four Kitchens 18

Launch
Storybook

> lando compound-install

> npm run theme-watch

Walk Through

Made for you by Four Kitchens

The Storybook UI

19

Working in Storybook

Made for you by Four Kitchens

Component Files

a. .twig
b. .yml
c. .scss and/or .js
d. .stories.js

Walk through

Working in
Storybook

21

Made for you by Four Kitchens 22

Walk through

.twig file

{% set text_with_image__base_class = 'text-with-image' %}

{% set text_with_image__attributes = {

 'data-image-position': text_with_image__position|default('left'),

 'class': bem(text_with_image__base_class, text_with_image__modifiers,

text_with_image__blockname)

} %}

<div {{ add_attributes(text_with_image__attributes) }}>

 {# Content #}

 <div {{ bem('content', [], text_with_image__base_class) }}>

 {# Heading #}

 {% if text_with_image__heading %}

 {% include "@atoms/text/headings/heading.twig" with {

 heading: text_with_image__heading,

 heading__level: '2',

 heading__blockname: text_with_image__base_class,

 } %}

 {% endif %}

Made for you by Four Kitchens 23

Walk through

.twig file

 {% include "@atoms/text/text/text.twig" with {

 text__content: text_with_image__text,

 text__blockname: text_with_image__base_class,

 } %}

 {# optional link #}

 {% if text_with_image__link__url %}

 {% include "@atoms/link/link.twig" with {

 link__content: text_with_image__link__content,

 link__url: text_with_image__link__url,

 link__style: 'arrow-right',

 } %}

 {% endif %}

 </div>

 <div {{ bem('image', text_with_image__modifiers,

text_with_image__base_class) }}>

 {% block text_with_image__image %}

 {% include "@atoms/images/image/image.twig" %}

 {% endblock %}

 </div>

</div>

Made for you by Four Kitchens 24

text_with_image__overline: 'Overline / Eyebrow'

text_with_image__heading: 'Master’s in Biological

Sciences'

text_with_image__text: '<p>The Department of Biological

Sciences maintains an active graduate program leading to

the master of science degree in biological sciences,

emphasizing independent research supported by advanced

course work.</p>'

text_with_image__link__content: 'Example link here'

text_with_image__link__url: '#'

Walk through

.yml file

Made for you by Four Kitchens 25

// Twig templates

import textWithImageTwig from './text-with-image.twig';

// Data files

import imageData from

'../../01-atoms/images/image/image.yml';

import textWithImageData from './text-with-image.yml';

/**

* Storybook Definition.

*/

export default { title: 'Molecules/Text With Image };

export const textWithImageTwig = () =>

TextWithImage(textWithMediaData);

Walk through

.stories.js file

Made for you by Four Kitchens

What our component looks like in Emulsify right now

26

Wiring our component

Made for you by Four Kitchens

Before Wiring: Drupal Text with Media paragraph form

28

Made for you by Four Kitchens

Verify the field output in the Manage Display is set to what our component expects to render.

29

Made for you by Four Kitchens

Before Wiring: What our component looks like in Drupal

30

Made for you by Four Kitchens

File Structure

Emulsify templates

Drupal templates

Made for you by Four Kitchens

File Structure

{% embed "@molecules/text-with-image/text-with-image.twig" with {

 text_with_image__text: content.field_text,

 text_with_image__position: content.field_media_alignment.0['#markup'],

}%}

 {% block text_with_image__image %}

 {{ content.field_media }}

 {% endblock %}

{% endembed %}

Emulsify twig template: text-with-image.twig

Drupal twig template: paragraph--text-with-media.html.twig

Made for you by Four Kitchens

Before Wiring: What our component looks like in Emulsify

33

Made for you by Four Kitchens

After Wiring

34

Made for you by Four Kitchens

Because Drupal websites (and Emulsify)
often have components nesting or looping
within other components, it can quickly get
more complicated.

Wiring Ground Rules

Going from Simple
to Complex

35

Get familiar with these Twig terms:
- Include
- Embed
- Extend
- Blocks

Made for you by Four Kitchens

{% embed "@molecules/accordion/accordion.twig" with {

 accordion__heading : content.field_heading .0,

}%}

 {% block accordion__items %}

 {{ content.field_accordion_items }}

 {% endblock %}

{% endembed %}

Looping in
template files

Loops are a necessary part of templating that allow us to
creates lists or grid-type layouts.

Whenever a template requires a loop, the loop should
iterate over a separate component or a twig partial.

Never attempt to preprocess values of a loop and send
through a include/embed!

Wiring Ground Rules

36

Made for you by Four Kitchens

{% embed "@molecules/accordion/accordion.twig" with {

 accordion__heading : content.field_heading .0,

}%}

 {% block accordion__items %}

 {{ content.field_accordion_items }}

 {% endblock %}

{% endembed %}

Looping in
template files

paragraph--accordion-item.html.twig

Wiring Ground Rules

37

{% include "@molecules/accordion/_accordion-item.twig" with {

 accordion__item__heading: content.field_heading,

 accordion__item__content: content.field_text,

}%}

Made for you by Four Kitchens

Let each system do
what it does best

Using Drupal's markup output can be more
cost-effective than rendering all markup
through Emulsify. Typical areas where this
applies include:

- Contextual Menus
- Webforms
- Views Exposed Forms

However, it's still important to try to implement
BEM type classes for consistent styling.

Wiring Ground Rules

38

👍Example:

{% embed "@molecules/teaser/

 teaser.twig" %}

 {% block teaser_image %}

 {{ content.field_teaser_media.0 }}

 {% endblock %}

{% endembed %}

Made for you by Four Kitchens

Use Drupal’s field
displays rather than
working with raw data

Your first step should always be to configure
the fields in the user interface. Because it is:

- Faster
- Makes Drupal Twig more clear.
- Default #cache feature.
- Applies default field values.
- No tricks needed for Multilingual

values.

Wiring Ground Rules

39

{% include "@molecules/teaser/

 teaser.twig" with {

 teaser__body: content.field_teaser,

} %}

*Not: teaser__body:node.field_teaser.0.value

👍Example:

Made for you by Four Kitchens

Good guidance
Wiring Ground Rules

● Render Drupal’s arrays-of-doom before sending to Emulsify

● Use Drupal’s responsive image system

● Let Drupal render Forms

● Only override Views templates for layout reasons

● Use view-modes where possible

40

Thank you!

Instructions
Appendix 1

Made for you by Four Kitchens

a single command to get a working Drupal site:
composer create-project
fourkitchens/sous-drupal-project [site-name-here]
--no-interaction

Install default content and demo theme:
lando sous-demo-install

Install compound components:
lando compound-install

Install Storybook:
npm run theme-watch

Commands we
used today:

Further Resources and
Documentation

Appendix 2

Made for you by Four Kitchens

Find out more about

● Sous
○ Sous repository
○ Default content module repository
○ Drupal Project

● Emulsify
○ Site
○ Drupal Project
○ Documentation

● Storybook
● Compound
● Four Kitchens
● Twig variable reference (from Sarah Carney)
● Twig Tweak / Twig Tweak cheat sheet

https://github.com/fourkitchens/sous-drupal-project
https://github.com/fourkitchens/sous-builder
https://www.drupal.org/project/sous
https://www.emulsify.info/
https://github.com/emulsify-ds/emulsify-drupal
https://docs.emulsify.info/
https://storybook.js.org/
https://github.com/emulsify-ds/compound
https://fourkitchens.com/
https://sarahcodes.medium.com/getting-drupal-8-field-values-in-twig-22b80cb609bd
https://www.drupal.org/project/twig_tweak
https://www.drupal.org/docs/contributed-modules/twig-tweak-2x/cheat-sheet

