
Lessons learned from
helping port the top
contrib projects to
Drupal 10.
Matt Glaman
Principal Software Engineer @ Acquia
Drupal Integrations Team

Maintainer of phpstan-drupal
Contributor to drupal-rector

Who has made their
project sites
Drupal 10 ready?

Who has made
contributed modules
Drupal 10 ready?

Results are from April 12th 2023

https://dev.acquia.com/drupal10/deprecation_status/projects

2,910 stable projects!

1,550 just need stable releases

https://dev.acquia.com/drupal10/deprecation_status/projects

Our team tracked over
180 modules in our
Drupal 10 readiness
initiative.

Our team was credited
on over 90 modules and
3 Drupal core issues

Our goal
Ensure all of Acquia’s product
modules and dependencies were
ready for the release of Drupal 10

(oh, and many of the top-used modules by Acquia’s customers.)

Acquia’s
Drupal Integration Team
We maintain Acquia’s product modules

#d10readiness Drupal Integration Team

mglaman (Matt Glaman)

japerry (Jakob Perry)

attilatilman (Attila Tilman)

Lal_ (Abhishek Lal)

balintpekker (Balint Pekker)

nkoporec (Nejc Koporec)

Did you know…

Drupal 11
2024

https://www.drupal.org/i/3330791

https://www.drupal.org/project/drupal/issues/3330791

Drupal 11 is
one year away.

What have we learned
from Drupal 9 -> 10?

How can we make
upgrading to
Drupal 11 even easier?

Looking back:
Drupal 10 changes

It’s just deprecations in Drupal core, right?

DRUPAL 10 CHANGES

WAIT THERE’S MORE?

ME READY TO FIX
CORE DEPRECATIONS

Dependency
major versions

Drupal 9 -> 10
PHP 7.4 -> 8.1
PHPUnit 8.5 -> 9
Symfony 4 -> 6
Guzzle 6 -> 7
CKEditor 4 -> 5

JavaScript
changes and
library removals

jQuery Once -> once
jQuery UI -> moved (contrib)
Backbone -> internal
Underscore -> internal

Pain from long
Drupal 8 lifecycle
(Nov 2015 - Nov 2021)

Tracking progress

● dev.acquia.com project readiness
dashboard available

● Maintained by Gábor

● Requires results from a Jenkins job
maintaintained by Drupal
Association

● It was* fragile and not run often
enough for active tracking

● /project/deprecation_status

Readiness
dashboard

* Was! Björn Brala (@bbrala) stabilized as a project using GitLab CI on Drupal.org (project_analysis project)

https://www.drupal.org/project/deprecation_status

How we did it
We decided up front that we
needed to track progress for
reporting in real time

● Private for our team at Acquia

● Built at DrupalCon Portland at the
Acquia booth with Jakob Perry

● Metapackages tracked
dependencies as stable, dev, or
unstable

● Allows collecting and verifying
patches

● CI pipelines automated testing
Drupal 10 and Guzzle 7 compatibility

● Upgrade Status results as a
dashboard

The Canary

The process of
fixing a module

Scan!
Find deprecations, breaking
changes, and required upgrades.

upgrade_status, drupal-check,
phpstan-drupal

Fix!
Once items have been found, they
need to be fixed.

drupal-rector, manually

Commit!
Work with maintainers to commit
the fixes

Profit!
The module is now Drupal 10
compatible

WAIT!
Is the module really ready?

What about…

● Was it tested manually, checking for runtime deprecation logs?

● No longer compatible with previous versions of Drupal core

● There may be new deprecations added until the major version
reached release candidate (RC) status

● A release needs to be made with the changes to avoid running -dev
releases or series of patches

What we learned
about this process

Tooling
Improved tooling to help facilitate
required changes to code.

Tooling can become out of date.

Cadence
Start earlier.

Not months before the major release,
but after each minor release.

Best practices
Define best practices for module
maintainers & contributors to
reference.

Coordination
This process requires a lot of
coordination, most of which is
currently ad-hoc

Backwards
compatibility

drupal/core support
Contributed projects should provide
support for all supported versions of
Drupal core.

3 versions supported at all times: 10.0.x, 9.5.x, 9.4.x

Fixing deprecations uses new code
that didn’t exist and breaks support
on previous versions.

9.5.x -> deprecations, new code
9.4.x -> new code does not exist

drupal/core support

Modules must provide
backward compatibility
layers for deprecations

Example:
Drupal 9.1.0 and
EventDispatcher
breaking changes

https://www.drupal.org/node/3159012

Fix to allow drupal/core: ^8 || ^9 without deprecations

Example:
Drupal 9.4.0 and
getImplementations
deprecated for
invokeAllWith

https://www.drupal.org/node/3000490

Fix to allow drupal/core: ^9 || ^10 without deprecations

Change records should
include these patterns
for contributors &
maintainers to use

Releases &
semantic versioning

We need guidelines and
recommendations for
semantic versioning

Hard breaking changes from
Symfony or other dependencies.

8.x-2.8 -> 8.x-3.0
2.0.7 -> 3.0.0

Major versions

Adding support for new Drupal core
majors, dropping unsupported
Drupal core minors

8.x-2.8 -> 8.x-2.9
2.0.7 -> 2.1.0

Minor versions

Adding support for new Drupal core
majors

8.x-2.8 -> 8.x-2.9
2.0.7 -> 2.0.8

Patch versions

Create releases that
bridge versions of Drupal

2.0.x -> drupal/core:^9
2.1.x -> drupal/core:^9.3
2.2.x -> drupal/core:^9.4||^10
3.0.x -> drupal/core:^10

Supporting a new
PHP version isn’t
a breaking change
(just don’t use its features.)

Adding dependencies to
fix deprecated libraries

Example: jQuery UI removal to contrib

“Don’t go making major
version changes”

by Jakob Perry
https://medium.com/jakob-on-drupal/dont-go-making-major-version-changes-474293dda1d7

https://medium.com/jakob-on-drupal/dont-go-making-major-version-changes-474293dda1d7

Challenge of getting
maintainers to commit
fixes & make releases

(Me. I am one of them. I am guilty.)

Drupal 10 readiness
project adoption
https://www.drupal.org/project/contribution_events/issues/3342443

https://www.drupal.org/project/contribution_events/issues/3342443

JavaScript fixes

There are no tools!

jscodeshift

“A JavaScript codemod
toolkit.” by Facebook.

mglaman/jquery-once-jscodeshift

http://mglaman/jquery-once-jscodeshift

nod_ used jscodeshift on
Drupal core for
jQuery.once
https://www.drupal.org/project/drupal/issues/3183149#comment-14011264

https://www.drupal.org/project/drupal/issues/3183149#comment-14011264

Should Drupal core
provide
jscodeshift scripts?

Or another standalone tool

PHPStan

PHPStan levels
upgrade_status runs PHPStan at
level 0 – deprecation only reporting.

We need to run at least level 2 to
improve usage. But…

8.9.x example: PHPStan level 0 silently fails on unknown method of
EntityInterface::getRevisionAuthor (deprecated on NodeInterface.)

PHPStan levels
drupal-check >1.4.0 runs PHPStan at level 2.

It resulted in unrelated changes Drupal 10 patches.

https://mglaman.dev/blog/drupal-check-140-enforcing-phpstan-level-2

https://mglaman.dev/blog/drupal-check-140-enforcing-phpstan-level-2

Custom rules
phpstan-drupal has to provide rules to find issues
only uncovered at runtime

phpstan-drupal rules for breaking changes

● Deprecated global constants (FILE_STATUS_PERMANENT)

● 9.2.x Access checking must be explicitly specified on content entity
queries

● 9.1.x Usage of symfony-cmf/routing dependency deprecated

● 9.3.x Forward compatibility shim added for Symfony 5 RequestStack

● 9.3.x #date_time_callbacks and #date_date_callbacks must
implement TrustedCallbackInterface

Upgrade Status

Dependencies
Detect new dependencies required
to replace deprecated libraries.

Suggest adding contrib modules to composer.json

Allow customizing the
default PHPStan level

Rector

Great for end-users

Rough for contrib

Why?
Backward compatibility

A one-way street
Rector automates code fixes, but it does
provide backward compatibility for its
fixes.

Requires manual intervention to apply
backwards compatibility fixes

Can we automate
backward compatibility
with Rector?
https://www.drupal.org/project/rector/issues/3350886

https://www.drupal.org/project/rector/issues/3350886

Project Update Bot

Providing patches at
scale for all projects
on Drupal.org

Before: Diagram of the Project Update Bot

Jenkins: upgrade_status on contrib

Jenkins project analysis job

Run upgrade_status

Did upgrade_status report errors?

No problems reported!

No

Fix info.yml & composer.json
Yes

Run Rector for PHP fixes

Collect patches as job artifacts

Patches available for all
contrib projects! Run Project Update Bot

Download analysis job artifacts

Check for patches in artifact

Upload patch if content has
changed since last run

Patches on Drupal.org!

project_analysis
Björn Brala (@bbrala) created a general project on Drupal.org that runs
on GitLab CI to replace the Jenkins job.

https://git.drupalcode.org/project/project_analysis/

https://git.drupalcode.org/project/project_analysis/

After: Diagram of the Project Update Bot

Pipeline: upgrade_status on contrib

GitLabCI: project_analysis

Run upgrade_status

Did upgrade_status report errors?

No problems reported!

No

Fix info.yml & composer.json
Yes

Run Rector for PHP fixes

Collect patches as job artifacts

Patches available for all
contrib projects! Run Project Update Bot

Download analysis job artifacts

Check for patches in artifact

Upload patch if content has
changed since last run

Patches on Drupal.org!

Learn more at
DrupalCon

“Project update bot:
The road to Drupal 11”

by Björn Brala (bbrala)
https://events.drupal.org/pittsburgh2023/session/project-update-bot-road-drupal-11

https://events.drupal.org/pittsburgh2023/session/project-update-bot-road-drupal-11

This process is only as
good as our tooling

Rector patches need
backwards compatibility to
be useful at scale.
https://mglaman.dev/blog/adding-backward-compatibility-rector-rules

https://mglaman.dev/blog/adding-backward-compatibility-rector-rules

Can we automate
JavaScript fixes?

Can we automate
dependency changes?

https://www.drupal.org/project/project_analysis/issues/3356371

https://www.drupal.org/project/project_analysis/issues/3356371

Let’s keeping
improving

Onwards, to
Drupal 11

Thank you!
Questions?

Please provide your feedback!

mid.camp/6884

https://mid.camp/6884

